• it is vulnerable to

## Model

We want:

$0 \leqslant h_\theta x \leqslant 1$

We have following hypothesis function:

$h_\theta(x) = g(\theta^Tx)$

And the sigmoid/logistic function:

$g(z) = \frac{1}{1 + e^{-z}}$

Therefore we have:

$h_\theta(x) = \frac{1}{1 + e^{-\theta^Tx}}$

## Interpretation

$h_\theta(x) =$ estimated probability that y = 1 on input x. That means:

$h_\theta(x) = P(y = 1 | x; \theta)$

(probability that y = 1, given x, parametrized by $\theta$)

## Decision boundary

Suppose:

$h_\theta(x) = g(\theta_0 + \theta_1x_1 + \theta_2x_2)$

let’s take: $\theta_0 = -3, \theta_1 = 1, \theta_2 = 1$

Predict y = 1 if $-3 + x_1 + x_2 \geqslant 0$

that is: $x_1 + x_2 \geqslant 3$

and predict y = 0 if

$x_1 -+ x_2 < 3$

Examples:

<Logistic%20Regression%20-%20Decision%20Boundary>

Non-linear decision boundaries: ## Cost function

$$Cost(h_θ(x), y) = \\ a) -log(h_θ(x)) if y = 1 \\ b) -log(1 - h_θ(x)) if y = 0$$

even better (instead of having 2 lines):

$Cost(h_\theta(x), y) = -y*log(h_\theta(x))-(1-y)l*og(1-h_\theta(x))$

Therefore the logistic regression cost function is:

$\begin{array}{lll} J(\theta) &=& \frac{1}{m}\sum_{i=1}^{m}Cost(h_\theta(x^i), y^i)\\ &=& -\frac{1}{m}[\sum_{i=1}^{m}y^i log(h_\theta(x^i))+(1-y^i)log(1-h_\theta(x^i))] \end{array}$

$J(\theta)=-\frac{1}{m}[\sum_{i=1}^{m}y^i log(h_\theta(x^i))+(1-y^i)log(1-h_\theta(x^i))]$
Want $min_\theta J(\theta)$:
$\begin{array}{lll} \text{Repeat and update simultaneously all } \theta_j:\\\ \theta_j &:=& \theta_j - \alpha\frac{\alpha}{\alpha\theta_j}J(\theta)\\ &:=& \theta_j -\alpha\frac{1}{m}\sum_{i=1}^{m}(h_\theta(x^i))-y^i)x_j^i\\ &:=& \theta_j -\alpha\sum_{i=1}^{m}(h_\theta(x^i))-y^i)x_j^i\\ \end{array}$
Algorithm looks identical to . But still there is a difference: The definition of $h_\theta(x)$:
• linear regression: $h_\theta(x) = \theta^T x$
• logistic regression: $h_\theta(x) = \frac{1}{1 + e^{-\theta^Tx}}$